# Oxidation of 1,2-Diaminobenzimidazoles to 3-Amino-1,2,4-benzotriazines 

Alice V. Zeiger and Madeleine M. Joullié*<br>Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Received August 9, 1976

Several substituted 1,2-diaminobenzimidazoles were synthesized via the cyclization of 0 -acylhydrazidoanilines with cyanogen bromide. A facile route to 1,2-diaminobenzimidazole and 1,2-diamino-5,6-dimethylbenzimidazole wass also devised using the corresponding 2 -aminobenzimidazoles and hydroxylamine- $O$-sulfonic acid as the aminating agent. Schiff bases of 1,2-diaminobenzimidazole were also prepared. The reaction of 1,2 -diaminobenzimidazole with benzil provided 2,3-diphenyl-as-triazino[2,3-a]benzimidazole. Oxidation of the 1,2-diaminobenzimidazoles with lead tetraacetate afforded 3-amino-1,2,4-benzotriazines.

The purine antimetabolite behavior of the benzimidazole nucleus ${ }^{1}$ coupled with the in vivo ${ }^{2}$ and in vitro ${ }^{3}$ utilization of preformed purines by malaria parasites prompted us to synthesize substituted 1,2-diaminobenzimidazoles as potential antimalarial agents. The substituents selected for this study, notably trifluoromethyl ( $-\mathrm{I},-\mathrm{R}$ ), chloro ( $-\mathrm{I},+\mathrm{R}$ ), and methyl $(+I,+R)$ groups, represent specific electronic effects important in a wide variety of biologically active drugs. ${ }^{4}$

Synthesis. Our initial approach involved extension of the recent work of Ho and Day ${ }^{5}$ to the synthesis of the 1,2-diaminobenzimidazole ring via the cyclization of $o$-acylhydrazidoanilines with cyanogen bromide. The required precursors were prepared from appropriate commercially available para-substituted anilines or o-nitroanilines, respectively. Thus, $p$-aminobenzotrifluoride (1) was acetylated in nearly quantitative yield with acetic anhydride. The resulting product (2) was nitrated with a $60: 40$ mixture of nitric and sulfuric acids and the intermediate (3) then saponified to give the desired substituted o-nitroaniline (4a).

Diazotization of $o$-nitroanilines (4a-c) followed by a sodium bisulfite reduction resulted in the formation of 0 -nitrophenylhydrazines ( $\mathbf{s a} \mathbf{a} \mathbf{c}$ ) which, in turn, were treated with acetic acid to afford the corresponding acetylated derivatives ( $6 \mathbf{a}-\mathrm{c}$ ).

To avoid possible dehalogenation, $6 \mathbf{b}$ was reduced with iron and water. Hydrogenation in a Parr apparatus using a platinum catalyst, although somewhat less effective than iron and water, was significantly faster and was used successfully for both $\mathbf{6 a}$ and $6 \mathbf{b}$. The reduction of $\mathbf{6 c}$ was accomplished in a Parr apparatus using palladium on carbon as the catalyst.

Cyclization of the reduced compounds was effected by addition of cyanogen bromide to an aqueous suspension of the substituted $o$-acylhydrazidoanilines ( $\mathbf{7 a - c}$ ). The substituted 1,2-diaminobenzimidazoles ( $9 \mathbf{a - c}$ ) were obtained by heating the monohydrobromides ( $8 \mathrm{a}-\mathrm{c}$ ) in hydrochloric acid, followed by neutralization with sodium bicarbonate.

Since the above synthesis was rather lengthy, we investigated possible methods of aminating 2 -aminobenzimidazoles. After limited success with some of the newer aminating agents such as $O$-(2,4-dinitrophenyl) hydroxylamine, ${ }^{6}$ we found hy-droxylamine- $O$-sulfonic acid to be useful for this purpose. When the reagent was added to an aqueous suspension of 2aminobenzimidazole ( 10 d ) and potassium hydroxide, at ambient temperature, 1,2-diaminobenzimidazole (9d) was precipitated after 30 min . 2-Amino-5,6-dimethylbenzimidazole (10e) was aminated by the same procedure to afford 9 e . The reactions are summarized in Scheme I.

Reactions. 1,2-Diaminobenzimidazole (9d) was found to react preferentially with aldehydes at the 1 -amino group. The reaction is catalyzed by a small amount of base. Schiff's bases 12 and 13 could be of considerable interest since the repository activity of antimalarial drugs has often been enhanced by Schiff base formation. Attempts to cyclize 12 to a five-membered ring with copper(II) acetate monohydrate and 2 equiv

Scheme I

of hydrochloric acid or dilute sulfuric acid were unsuccessful. Only the corresponding salts were formed. The structures of 12 and 13 , as well as of the salts derived from 12 , were ascertained by infrared, ultraviolet, and nuclear magnetic resonance spectroscopy. ${ }^{13} \mathrm{C}$ nuclear magnetic resonance spectra of these compounds enabled us to unequivocally rule out the formation of a five-membered ring and identify the products of the cyclization attempts as the cited salts.

Although it had previously been shown by Ho and Day that 1,2-diaminobenzimidazole (9d) reacted with a number of $\alpha$ dicarbonyl compounds including 2,3-butanedione, 2,3-pentanedione, pyruvic acid and benzoylformic acid, they could not obtain a condensation product with benzil. ${ }^{8}$ We found that the desired compound (14) could, in fact, be generated in quantitative yield in the presence of potassium hydroxide as a catalyst. These reactions are summarized in Scheme II.

There are several examples in the literature of the synthesis of nitrogen heterocycles via the oxidation of $N$-amino compounds. Baumgarten et al. ${ }^{9}$ obtained 3 -cinnolinol by the lead tetracetate oxidation of N -aminooxindole. Rees et al. ${ }^{10}$ synthesized 1,2,3-benzotriazines using either 1 - or 2 -aminoindazoles. Additional examples involve the formation of pyridazines from 1-amino-2-pyridones, upon loss of carbon monoxide, ${ }^{11}$ and the preparation of 1,2,4-benzotriazines from 1-amino-2-quinoxalones. ${ }^{12}$ The addition of lead tetraacetate to a solution of each of the 1,2-diaminobenzimidazoles ( $9 \mathrm{a}-\mathrm{e}$ ) in methylene chloride resulted in their oxidative conversion to the appropriately substituted 3-amino-1,2,4-benzotriazines (11a-e), thereby illustrating the versatility of the oxidation

Scheme II

of N -amino compounds in synthetic heterocyclic chemistry.

3-Amino-6-chloro-1,2,4-benzotriazine (11b) was previously reported by Wolf et al. ${ }^{13}$ In a subsequent publication, ${ }^{14}$ these authors gave the melting point of the compound as $250-251$ ${ }^{\circ} \mathrm{C}$ but did not analyze or further characterize their product. We found the melting point of 11 b to be $277.5-279^{\circ} \mathrm{C}$ and both our analytical and spectral data support the postulated structure.

Although the reported mechanisms for the lead tetraacetate oxidation of N -amino compounds have invoked nitrene formation and subsequent ring expansion, we were unable to trap a nitrene intermediate either with olefins such as cyclohexene or trichloroethylene or with dimethyl sulfoxide.

## Experimental Section

General. Melting points were determined with a Thomas-Hoover apparatus and are uncorrected. Microanalyses were performed by Midwest Microlab, Ltd., Indianapolis, Ind., and Galbraith Laboratories, Knoxville, Tenn. IR spectra were obtained on a Perkin-Elmer 521 double beam grating spectrophotometer equipped with cesium bromide optics. ${ }^{1} \mathrm{H}$ NMR spectra were recorded with a Varian A-60A or JEOL-JNM-PS 100 instrument. ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a JEOL-JNM-PS 100 spectrometer. Mass spectra were determined on a Perkin-Elmer 270-B, a Consolidated Electrodynamics Corp. CEC-110 (double focusing), and a Varian MAT CH-5 mass spectrometer. UV spectra were obtained on a Beckman DB spectrophotometer.

4-Trifluoromethylacetanilide (2). $p$-Aminobenzotrifluoride ( $10.0 \mathrm{~g}, 0.0621 \mathrm{~mol}$ ) was added to 30 ml of acetic anhydride to give crude 2 which was then purified by recrystallization from benzenechloroform ( $12 \mathrm{~g}, 95 \%$ yield): mp $151-152^{\circ} \mathrm{C}$ (lit. ${ }^{15 \mathrm{a}} \mathrm{mp} 152^{\circ} \mathrm{C}$, lit. ${ }^{15 \mathrm{~b}}$ $150-151^{\circ} \mathrm{C}$ ); IR (KBr) $3400,3375,3200(\mathrm{NH}), 1670 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{Me}_{2} \mathrm{CO}-d_{6}\right) \delta 2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.61\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{H}-\overline{\mathrm{s}, \mathrm{H}-6}}=9 \mathrm{~Hz}\right.$, $\mathrm{H}-3$ and $\mathrm{H}-5), 7.91\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}-6}=9 \mathrm{~Hz}, \mathrm{H}-2\right.$ and $\left.\mathrm{H}-6\right)$, and 9.55 (broad s, $1 \mathrm{H}, \mathrm{NH}$ ).
2-Nitro-4-trifluoromethylacetanilide (3). Compound 2 (5.00 $\mathrm{g}, 0.0246 \mathrm{~mol}$ ) was nitrated with a $60: 40$ mixture of nitric and sulfuric acids ( 50 ml ). Recrystallization of the crude product from absolute ethanol gave $5.47 \mathrm{~g}\left(90 \%\right.$ yield) of 3: $\mathrm{mp} 110.5-112{ }^{\circ} \mathrm{C}$ (lit. ${ }^{16} \mathrm{mp}$ $112-113{ }^{\circ} \mathrm{C}$ ); IR ( KBr ) $3400,3300(\mathrm{NH}), 1715(\mathrm{CO}), 1525$, and 1365 $\mathrm{cm}^{-1}\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}\right) \delta 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.87-9.10(\mathrm{~m}$, 3 H , aromatic H), and 10.27 (broad s, $1 \mathrm{H}, \mathrm{NH}$ ).
2-Nitro-4-trifluoromethylaniline (4a). Compound 3 ( 5.00 g , 0.002 mol ) was heated with potassium hydroxide in a minimum amount of aqueous ethanol for 30 min . The mixture was then added to 75 ml of cold water to afford a bright yellow precipitate. This solid was then chromatographed on silica gel using a $1: 1$ chloroform-benzene solution to yield 3.89 g ( $94 \%$ yield) of $4 \mathrm{a}: \mathrm{mp} 105-106.5^{\circ} \mathrm{C}$ (lit. ${ }^{16}$ $\mathrm{mp} 106-107^{\circ} \mathrm{C}$ ) ; IR ( KBr ) $3400,3260,3100(\mathrm{NH}), 1525$, and 1348 $\mathrm{cm}^{-1}\left(\mathrm{NO}_{2}\right) ; \mathrm{H}^{1} \mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}\right) \delta 7.21\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}-5 . \mathrm{H}-6}=9 \mathrm{~Hz}\right.$, $\mathrm{H}-6), 7.54$ (dd, $\left.1 \mathrm{H}, J_{\mathrm{H} \cdot \mathrm{H}-6}=2 \mathrm{~Hz}, \mathrm{H}-5\right), 7.72\left(\right.$ broad s, $2 \mathrm{H}, \mathrm{NH}_{2}$ ), and 8.27 (broad s, $1 \mathrm{H}, \mathrm{H}-3$ ).

2-Nitro-4-trifluoromethylphenylhydrazine (5a). A solution of sodium nitrite $(13.70 \mathrm{~g}, 0.198 \mathrm{~mol})$ in 25 ml of water was added dropwise to a stirred mixture of $4 \mathrm{a}(31.0 \mathrm{~g}, 0.150 \mathrm{~mol})$ and 52.5 ml of concentrated hydrochloric acid at $-7^{\circ} \mathrm{C}$. The reaction mixture was filtered and the filtrate added to a stirred solution of sodium sulfite $(47.5 \mathrm{~g}, 0.377 \mathrm{~mol})$ and sodium hydroxide ( $10.0 \mathrm{~g}, 0.25 \mathrm{~mol}$ ) in 250 ml
of water at $-5^{\circ} \mathrm{C}$. Concentrated hydrochloric acid ( 37.5 ml ) was added to the mixture and the temperature of the solution was then raised to $50^{\circ} \mathrm{C}$ for 30 min . The yellow solid that formed on cooling was collected, added to 150 ml of concentrated hydrochloric acid, and heated on a steam bath until the yellow solid was converted to a brown precipitate. The brown precipitate was dissolved in a minimum amount of hot water. Insoluble tars were removed by filtration and the filtrate was made basic with a saturated aqueous sodium acetate solution. The free base was collected and recrystallized from benzene to give 13 g ( $39 \%$ yield) of bright orange needles: mp $115-116^{\circ} \mathrm{C}$ (lit. ${ }^{17} \mathrm{mp} 112-113$ ${ }^{\circ} \mathrm{C}$ ); IR ( KBr ) 3450, $3300\left(\mathrm{NH}_{2}\right), 1560$, and $1310 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{MeNO}_{2}-d_{3}\right) \delta 4.28\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.66\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{s} \cdot \mathrm{H}-6}=9.5, J_{\mathrm{H}-3 . \mathrm{H}-\mathrm{s}}\right.$ $=2 \mathrm{~Hz}, \mathrm{H}-5), 7.88\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}-3, \mathrm{H} \cdot 6}=1 \mathrm{~Hz}, \mathrm{H}-6\right), 8.36(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3)$, and 9.23 (s, $1 \mathrm{H}, \mathrm{NH}$ ).

4-Chloro-2-nitrophenylhydrazine (5b). This compound was prepared by the procedure described for $\mathbf{5 a}$ using $25.50 \mathrm{~g}(0.148 \mathrm{~mol})$ of 4 -chloro-2-nitroaniline. The solid obtained was recrystallized from benzene to yield 20.6 g ( $74.3 \%$ ) of brownish-red needles: mp 135-136 ${ }^{\circ} \mathrm{C}$ (lit..$\left.^{18} \mathrm{mp} 134^{\circ} \mathrm{C}\right) ; \mathrm{IR}(\mathrm{KBr}) 3400,3250\left(\mathrm{NH}_{2}\right), 1550$ and $1340 \mathrm{~cm}^{-1}$ $\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ ) $\delta 4.23$ (broad s, $2 \mathrm{H}, \mathrm{NH}_{2}$ ), 7.53 (dd, 1 $\left.\mathrm{H}, J_{\mathrm{H}-5, \mathrm{H}-6}=10, J_{\mathrm{H}-5, \mathrm{H}-5}=2 \mathrm{~Hz}, \mathrm{H}-5\right), 7.73\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} \cdot 3 . \mathrm{H}-6}=1 \mathrm{~Hz}\right.$, H-6), 7.98 (dd, $1 \mathrm{H}, \mathrm{H}-3$ ), and 9.18 (broad s, $1 \mathrm{H}, \mathrm{NH}$ ).

4-Methyl-2-nitrophenylhydrazine (5c). This compound was prepared via the procedure described for 5 a using $10.9 \mathrm{~g}(0.158 \mathrm{~mol})$ of sodium nitrite in 20 ml of water and $18.0 \mathrm{~g}(0.118 \mathrm{~mol})$ of 4 -methyl-2-nitroaniline. The filtrate was added to a stirred solution of sodium sulfite ( $38.00 \mathrm{~g}, 0.3015 \mathrm{~mol}$ ) and sodium hydroxide $(8.0 \mathrm{~g}, 0.2$ mol ) in 200 ml of water at $-5^{\circ} \mathrm{C}$. The resulting red product was recrystallized from benzene to give 13.0 g of 5 c ( $66 \%$ yield): mp 110-112 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{19} \mathrm{mp} 110^{\circ} \mathrm{C}$ ); IR ( KBr$) 3250\left(\mathrm{NH}_{2}\right), 1550$ and $1340 \mathrm{~cm}^{-1}$ ( $\mathrm{NO}_{2}$ ) ; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{MeNO}_{2}-d_{3}\right) \delta 2.24$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ ), 3.95 (broad s, 2 H , $\left.\mathrm{NH}_{2}\right), 7.34\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}-5 . \mathrm{H}-6}=9.5, J_{\mathrm{H}-7, \mathrm{H}-.}=2 \mathrm{~Hz}, \mathrm{H}-5\right), 7.58(\mathrm{dd}, 1$ $\left.\mathrm{H}, J_{\mathrm{H}-3, \mathrm{H}-6}=<1 \mathrm{~Hz}, \mathrm{H}-6\right), 7.86$ (dd, $1 \mathrm{H}, \mathrm{H}-3$ ), and 8.73 (broad s, 1 H , NH ).

2-Acethydrazido-5-trifluoromethylnitrobenzene (6a). A solution of $5 \mathbf{a}(3.20 \mathrm{~g}, 0.0145 \mathrm{~mol})$ in 10 ml of glacial acetic acid was heated on a steam bath for 1.5 h . Addition of 50 ml of cold water to this solution induced the precipitation of crude product which was purified by recrystallization from chloroform to give $3.00 \mathrm{~g}(79 \%$ yield) of 6a as bright yellow needles: mp $186-187^{\circ} \mathrm{C}$; IR ( KBr ) 3280,3180 (NH), $1655(\mathrm{CO}), 1535$, and $1340 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{Me}_{2} \mathrm{CO}-d_{6}$ ) $\delta 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 7.44\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H} \cdot 3 . \mathrm{H}-4}=9 \mathrm{~Hz}\right.$, $\mathrm{H}-3$ ), 7.85 (d, $1 \mathrm{H}, \mathrm{H}-4), 8.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6)$, and 9.43 (broad s, 1 H , NHCO).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{37}: \mathrm{C}, 41.07 ; \mathrm{H}, 3.06 ; \mathrm{N}, 15.97$. Found: C , 40.89; H, 3.11; N, 16.09.

2-Acethydrazido-5-chloronitrobenzene (6b). A solution of 5b $(20.60 \mathrm{~g}, 0.110 \mathrm{~mol})$ was acetylated with 85 ml of glacial acetic acid as described for 6a. The product was recrystallized from chloroform to give 18.0 g ( $71 \%$ yield) of $6 \mathbf{b}$ as orange needles: $\mathrm{mp} 164.5-165.5^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) 3280,3190(\mathrm{NH}), 1650(\mathrm{CO}), 1535$ and $1330 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (Me2SO-d $\left.\mathrm{d}_{6}\right) \delta 2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.51$ (broad m, $1 \mathrm{H}, \mathrm{NH}$ ), 7.20 $\left(\mathrm{d}, 1 \mathrm{H}, J_{\mathrm{H}-3, \mathrm{H} \cdot 4}=9.5 \mathrm{~Hz}, \mathrm{H}-3\right), 7.61\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}-4 . \mathrm{H} \cdot \mathrm{i}}=2.5 \mathrm{~Hz}, \mathrm{H}-4\right)$, 8.11 (d, $1 \mathrm{H}, \mathrm{H}-6$ ), and 9.29 (broad s, $1 \mathrm{H}, \mathrm{NHCO}$ ).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClN}_{3} \mathrm{O}_{3}: \mathrm{C}, 41.82 ; \mathrm{H}, 3.51 ; \mathrm{N}, 18.31$. Found: C, 41.62; H, 3.59; N, 18.21.

2-Acethydrazido-5-methylnitrobenzene (6c). A solution of 5c $(2.5 \mathrm{~g}, 0.015 \mathrm{~mol})$ was acetylated with 9 ml of glacial acetic acid as described for $6 \mathbf{a}$. The product was recrystallized from chloroform to give 1.94 g ( $62 \%$ yield) of $6 \mathbf{c}$ as orange needles: $\mathrm{mp} 168-169.5^{\circ} \mathrm{C}$; IR ( KBr ) $3250,3200(\mathrm{NH}), 1650(\mathrm{CO}), 1515$ and $\left.1325 \mathrm{~cm}^{-1}(\mathrm{NO})_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ ) $\delta 2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.37$ (broad s, $1 \mathrm{H}, \mathrm{NH}$ ), $7.07\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}-3, \mathrm{H}-4}=9 \mathrm{~Hz}, \mathrm{H}-3\right), 7.46(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{\mathrm{H}-4, \mathrm{H}-6}=2 \mathrm{~Hz}, \mathrm{H}-4\right), 7.93(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-6)$, and $9.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCO})$.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{33} \mathrm{O}_{3}: \mathrm{C}, 51.67 ;$ H, 5.30: N, 20.09. Found: C, 51.55; H, 5.18; N, 20.14.

2-Acethydrazido-5-trifluoromethylaniline (7a). A solution of $6 \mathrm{a}(1.026 \mathrm{~g}, 0.0039 \mathrm{~mol})$ in 50 ml of absolute ethanol was hydrogenated in a Parr apparatus for 30 min at 50 psi using 0.1 g of $5 \%$ platinum on carbon.
The product was recrystallized from ethyl acetate and ether to give 0.86 g ( $94 \%$ yield) of 7 a as a white solid: $\mathrm{mp} 166-167^{\circ} \mathrm{C}$; IR (KBr) 3300, $3150(\mathrm{NH})$, and $1670 \mathrm{~cm}^{-1}$ (CO); ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ ) $\delta 1.92$ ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ) $, 5.02\left(\right.$ broad s, $\left.2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.50-7.28(\mathrm{~m}, 4 \mathrm{H}$, aromatic H and NH), and 9.70 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{NHCO}$ ).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 46.35 ; \mathrm{H}, 4.32 ; \mathrm{N}, 18.02$. Found: C, 46.51; H, 4.43; N, 18.30 .

2-Acethydrazido-5-chloroaniline (7b). This compound was obtained by the hydrogenation of a solution of $6 b(1.0 \mathrm{~g}, 0.004 \mathrm{~mol})$ in 50 ml of ethanol as described for 7 a . The product was recrystallized
from benzene to give 0.48 g ( $55 \%$ yield) of 7 b as a white solid, mp $124-125^{\circ} \mathrm{C}$. Compound $6 \mathbf{b}(7.34 \mathrm{~g}, 0.032 \mathrm{~mol})$ in 200 ml of benzene was also reduced with activated iron $(56.0 \mathrm{~g}, 1.0 \mathrm{~mol})$ to give $3.9 \mathrm{~g}(61 \%$ yield) of 7 b : $\mathrm{IR}(\mathrm{KBr}) 3300,3250,3200,3175(\mathrm{NH})$, and $1650 \mathrm{~cm}^{-1}$ (CO); 'H NMR ( $\mathrm{Me}_{2} \mathrm{CO}-d_{6}$ ) $\delta 1.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.03$ (broad s, 1 H , $\mathrm{NH}_{2}$ ), 4.58 (broad s, $1 \mathrm{H}, \mathrm{NH}_{2}$ ), 6.38 (broad s, $1 \mathrm{H}, \mathrm{NH}$ ), 6.38-6.95 (m, 3 H , aromatic H ), and 9.05 (broad s, $1 \mathrm{H}, \mathrm{NHCO}$ ).
Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClN}_{3} \mathrm{O}: \mathrm{C}, 48.11 ; \mathrm{H}, 5.05 ; \mathrm{N}, 21.06$. Found: C, 48.37; H, 4.93; N, 21.28.

2-Acethydrazido-5-methylaniline (7c). This compound was prepared by the hydrogenation of $6 \mathrm{c}(4.00 \mathrm{~g}, 0.019 \mathrm{~mol})$ in 150 ml of absolute ethanol using 0.2 g of $10 \%$ palladium on carbon (Parr apparatus, 1 h at 60 psi ). The product was recrystallized from benzene to give 2.9 g ( $86 \%$ yield) of 7 c as orange-brown needles: mp 117.5-119 ${ }^{\circ} \mathrm{C}$ : IR (KBr) $3375,3280,3250,3180(\mathrm{NH})$, and $1650 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ ) $\delta 1.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right.$ ), $2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.47$ (broad s, $2 \mathrm{H}, \mathrm{NH}_{2}$ ), 4.48 (broad s, $1 \mathrm{H}, \mathrm{NH}$ ), $6.13-6.72(\mathrm{~m}, 3 \mathrm{H}$, aromatic H), 9.53 (broad s, $1 \mathrm{H}, \mathrm{NHCO}$ ).
Anal. Caled for $\mathrm{C}_{9} \mathrm{H}_{1} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 60.31 ; \mathrm{H}, 7.31 ; \mathrm{N}, 23.45$. Found: C, 60.35; H, 7.32; N, 23.19

1-Acetamido-2-amino-5-trifluoromethyl-1 $\boldsymbol{H}$-benzimidazole Hydrobromide Monohydrate (8a). Compound 7a ( 0.440 g, 0.0019 mol ) in 10 ml of water was added to a solution of cyanogen bromide $(1.16 \mathrm{~g}, 0.011 \mathrm{~mol})$ in 10 ml of water and the mixture stirred at room temperature for 2 h . The water was then removed under reduced pressure and the resulting solid was recrystallized from acetonitrile to give $0.41 \mathrm{~g}\left(60 \%\right.$ yield) of $8 \mathrm{a}: \mathrm{mp} 249.5-251^{\circ} \mathrm{C}$; IR ( KBr ) 3350,3200 , $3125(\mathrm{NH})$, and $1725 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 2.23(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{5}$ ), 4.82 (broad s, HBr and $\mathrm{H}_{2} \mathrm{O}$ ), $7.30-8.00(\mathrm{~m}, 3 \mathrm{H}$, aromatic H ), 9.37 (broad s, $2 \mathrm{H}, \mathrm{NH}_{2}$ ), and 11.60 (broad s, $1 \mathrm{H}, \mathrm{NH}$ ).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrF}_{33} \mathrm{~N}_{4} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 33.63 ; \mathrm{H}, 3.39 ; \mathrm{N}, 15.69$. Found: C, 33.24; H, 3.23; N, 15.62.

1-Acetamido-2-amino-5-chloro-1 $\boldsymbol{H}$-benzimidazole Hydrobromide ( 8 b ). Compound $7 \mathrm{~b}(0.119 \mathrm{~g}, 0.0006 \mathrm{~mol})$ in 10 ml of water was mixed with a solution of cyanogen bromide ( $0.291 \mathrm{~g}, 0.00275 \mathrm{~mol}$ ) in 10 ml of water as described for $8 \mathbf{a}$. The product was recrystallized from absolute ethanol to give $0.16 \mathrm{~g}\left(87 \%\right.$ yield) of $8 \mathbf{b}$ : $\mathrm{mp} 306-308^{\circ} \mathrm{C}$; IR ( KBr ) 3400, $3200,3150(\mathrm{NH})$, and $1740 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right)$ ) $2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.53$ (broad s, HBr ), 7.17-7.67(m, :3 H. aromatic H), 9.23 (broad s, $2 \mathrm{H}, \mathrm{NH}_{2}$ ), and 11.51 (broad s, 1 H , NH).

Anal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{BrClN}_{4} \mathrm{O}: \mathrm{C}, 35.35 ; \mathrm{H}, 3.30 ; \mathrm{N}, 18.34$. Found: C, $35.38 ; \mathrm{H}, 3.58 ; \mathrm{N}, 17.87$.

1-Acetamido-2-amino-5-methyl-1 $H$-benzimidazole Hydrobromide Monohydrate ( 8 c ). Compound $7 \mathrm{c}(1.87 \mathrm{~g}, 0.0104 \mathrm{~mol})$ in 50 ml of water was mixed with a solution of cyanogen bromide (1.10 $\mathrm{g}, 0.010 \mathrm{~mol}$ ) in 10 ml of water as described for $8 \mathbf{a}$. The product was recrystallized from acetonitrile to give 2.17 g ( $69 \%$ yield) of $8 \mathbf{c}$ : mp $254.5-255.5^{\circ} \mathrm{C} ; \mathrm{IR}(\mathrm{KBr}) 3400,3350,3200(\mathrm{NH})$, and $1720 \mathrm{~cm}^{-1}(\mathrm{CO})$; ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ ) $\delta 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.15$ (broad s, HBr and $\mathrm{H}_{2} \mathrm{O}$ ), 6.72-7.45 (m, 3 H , aromatic H ), 8.97 (broad $\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}$ ), and 11.45 (broad s, $1 \mathrm{H}, \mathrm{NH}$ ).

Anal. Caled for $\mathrm{C}_{10} \mathrm{H}_{13}: \mathrm{BrN}_{4} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 39.61 ; \mathrm{H}, 4.99 ; \mathrm{N}, 18.48$. Found: C, 39.58: H, 4.99: N, 18.37.

1,2-Diamino-5-trifluoromethyl-1 $\boldsymbol{H}$-benzimidazole (9a). A solution of 8 a ( $9.630 \mathrm{~g}, 0.0018 \mathrm{~mol}$ ) in 4.5 ml of 4 N hydrochloric acid was refluxed for 1 h . The solution was cooled and then made basic with a saturateo sodium bicarbonate solution. The precipitate that formed was recrystallized from absolute ethanol to give 0.35 g ( $93 \%$ yield) of 9a: mp $250-25 \mathrm{~L}^{\circ} \mathrm{C}$; IR ( KBr ) 3400,3275 , and $3100 \mathrm{~cm}^{-1}$ ( NH ) : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me} \cdot \mathrm{SO}-d_{6}\right) \delta 5.75\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NNH}_{2}\right), 6.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right.$ ), $7.30-7.48\left(\mathrm{~m}, 3 \mathrm{H}\right.$, aromatic H); UV $\lambda_{\max }($ ethanol $)(\log \epsilon) 285(3.80)$, $256 \mathrm{sh}(3.50)$, and $247 \mathrm{~nm}(3.64)$; $\lambda_{\max }\left(\right.$ ethanol, $\left.\mathrm{H}^{+}\right)(\log \epsilon) 282(3.82)$, 276 (3.84), 243 (3.49), and 234 nm (3.75).

Anal. Calcd for $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{~N}_{4}$ : C, 44.45; H, 3.22; N, 25.92; F, 26.37. Found: C, 44.19; H, 3.11; N, 25.72; F, 26.59.
1,2-Diamino-5-chloro-1H-benzimidazole (9b). A solution of $\mathbf{8 b}$ ( $0.500 \mathrm{~g}, 0.0016 \mathrm{~mol}$ ) in 60 ml of 4 N hydrochloric acid was refluxed for 1 h and then treated as described for 9 a . The product was recrystallized from ethanol-benzene to afford 0.20 g ( $67 \%$ yield) of 9 b : mp $274-275^{\circ} \mathrm{C}$; IR ( KBr ) 3375, 3240 , and $3140 \mathrm{~cm}^{-1}$ (NH); ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ ) $\delta 5.55\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NNH}_{2}\right), 6.37\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.75-7.18(\mathrm{~m}$, 3 H , aromatic H); UV $\lambda_{\max }$ (ethanol) ( $\log \epsilon$ ) $290(3.53), 254$ (3.34), and $249 \mathrm{~nm}(3.36) ; \lambda_{\text {thax }}\left(\right.$ ethanol, $\left.\mathrm{H}^{+}\right)(\log \epsilon) 289(3.48), 283(3.53), 240 \mathrm{sh}$ (3.28) and 232 nm sh (3.53).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{ClN}_{4}$ : $\mathrm{C}, 46.02 ; \mathrm{H}, 3.87 ; \mathrm{N}, 30.69$. Found: C, 45.95; H, 4.03; N, 30.48 .

1,2-Diamino-5-methyl-1 $\boldsymbol{H}$-benzimidazole (9c). A solution of $8 \mathrm{c}(1.00 \mathrm{~g}, 0.0033 \mathrm{~mol})$ in 120 ml of 4 N hydrochloric acid was refluxed for 1 h and then veated as described for $9 \mathbf{9}$. The product was recrys-
tallized from absolute ethanol to afford 0.50 g ( $94 \%$ yield) of $9 \mathrm{c}: \mathrm{mp}$ $296.5-298{ }^{\circ} \mathrm{C}$; IR (KBr) 3340,3200 , and $3050 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NNH}_{2}\right), 6.08(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{NH}_{2}$ ), and 6.67-7.10 (m, 3 H, H-4, aromatic H); UV $\lambda_{\max }$ (ethanol) (log є) 286 (4.18) and $248 \mathrm{~nm}(4.02) ; \lambda_{\text {max }}$ (ethanol, $\mathrm{H}^{+}$) $(\log \epsilon) 285$ (4.17), 279 (4.23), $276 \mathrm{sh}(4.18$ ), and 231 nm sh (4.30).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4}: \mathrm{C}, 59.24 ; \mathrm{H}, 6.21 ; \mathrm{N}, 34.54$. Found: C, 59.29; H, 6.01; N, 34.56.
Amination of 2-Aminobenzimidazole (10d). A. With $O$-(2,4Dinitrophenyl)hydroxylamine. A solution of $10 \mathrm{~d}(1.33 \mathrm{~g}, 0.01 \mathrm{~mol})$ in 50 ml of methanol was treated with sodium ( $0.23 \mathrm{~g}, 0.01 \mathrm{~g}$-atom) in 30 ml of the same solvent. Evaporation of the solvent afforded a solid which was then dissolved in 100 ml of dry dimethylformamide and mixed with 1 equiv of $O$-(2,4-dinitrophenyl)hydroxylamine ( 1.99 $\mathrm{g}, 0.01 \mathrm{~mol}$ ) at room temperature. After the solvent was removed under reduced pressure, the residue was then triturated with benzene, collected by filtration, and treated with aqueous sodium bicarbonate to afford 1,2-diaminobenzimidazole (9d) as an off-white solid ( 0.52 g , $35 \%$ yield), mp $248-252^{\circ} \mathrm{C}$ (lit. ${ }^{5} \mathrm{mp} 256-259^{\circ} \mathrm{C}$ ).
B. With Hydroxylamine- O -sulfonic Acid. Hydroxylamine- O sulfonic acid ( $9.30 \mathrm{~g}, 0.082 \mathrm{~mol}$ ) was added to a solution of $10 \mathrm{~d}(10.0$ $\mathrm{g}, 0.075 \mathrm{~mol})$ and potassium hydroxide ( $9.82 \mathrm{~g}, 0.175 \mathrm{~mol}$ ) in 200 ml of water at $25^{\circ} \mathrm{C}$. The reaction mixture was stirred at ambient temperature for 30 min . The solid that formed was collected and recrystallized from ethanol to afford 5.50 g ( $49.5 \%$ yield) of $9 \mathrm{~d}, \mathrm{mp} 255-258$ ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{5} \mathrm{mp} 256-259^{\circ} \mathrm{C}$ ). The aqueous filtrate was evaporated and the remaining solid extracted with hot ethanol to give 3.5 g of 10 d . Based on recovered starting material, the yield of 9 d was $76 \%$.

Amination of 2-Amino-5,6-dimethylbenzimidazole (10e). A solution of $10 \mathrm{e}(1.61 \mathrm{~g}, 0.01 \mathrm{~mol})$ in 100 ml of 0.85 N potassium hydroxide was treated overnight with hydroxylamine- $O$-sulfonic acid $(1.24 \mathrm{~g}, 0.011 \mathrm{~mol})$. The solid that formed was collected and recrystallized from ethanol to afford 0.44 g ( $25 \%$ yield) of $9 \mathbf{e}, \mathrm{mp} 292-294$ ${ }^{\circ} \mathrm{C}$. Evaporation of the ethanol filtrate gave $0.57 \mathrm{~g}(35 \%$ recovery $)$ of 10 e . The corrected yield of 9 e was $38.5 \%$ IR ( KBr ) 3330,3200 , and $3050 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.25$ ( s , $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.38$ (broad s, $2 \mathrm{H}, \mathrm{NNH}_{2}$ ), 5.88 (broad s, $2 \mathrm{H}, \mathrm{NH}_{2}$ ), and $6.89\left(\mathrm{~s}, 2 \mathrm{H}\right.$, aromatic H); UV $\lambda_{\text {max }}($ ethanol $)(\log \epsilon) 287(4.01)$ and 243 $\mathrm{nm}(3.86) ; \lambda_{\max }$ (ethanol, $\left.\mathrm{H}^{+}\right)(\log \epsilon) 287(4.03), 282(4.06), 280(4.04)$, and 232 nm (4.09).
Reactions of 1,2 -Diaminobenzimidazole (9d). 1. With Aldehydes. 2-Amino-1-[(o-nitrobenzylidene)amino]benzimidazole (12). A mixture of $0.592 \mathrm{~g}(0.004 \mathrm{~mol})$ of 9 d in 20 ml of ethanol and $o$-nitrobenzaldehyde ( $0.60 \mathrm{~g}, 0.004 \mathrm{~mol}$ ) in 20 ml of ethanol was refluxed for 2 h to yield 0.84 g of $\mathbf{1 2 a}$ ( $75 \%$ yield) as orange needles, mp $259-260^{\circ} \mathrm{C}$. This reaction was found to be catalyzed by base. When $9 \mathrm{~d}(1.18 \mathrm{~g}, 0.008 \mathrm{~mol})$ and $o$-nitrobenzaldehyde ( $1.21 \mathrm{~g}, 0.008 \mathrm{~mol}$ ) were heated in 40 ml of ethanol, addition of 2 drops of 2 N potassium hydroxide induced immediate precipitation of 12 as an orange solid ( 2.2 g, $98 \%$ yield): IR ( KBr ) $3350(\mathrm{NH}), 3000(=\mathrm{CH}), 1660(\mathrm{C}=\mathrm{C}), 1510$ ( $\mathrm{C}=\mathrm{N}$ ) , 1550, and $1360 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 6.85(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.93-8.66(\mathrm{~m}, 8 \mathrm{H}$, aromatic H$)$, and $9.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH})$; ${ }^{13} \mathrm{C}$ NMR 154.1 (C-2), 148.4 (C-NO ${ }_{2}$ ), 144.1 ( $\mathrm{N}=\mathrm{C}$ ), 142.5 (C-9), 133.6 (C-5'), 131.1 (C-4'), 129.3 (C-8), 128.9 (C-6'), 128.5 (C-1'), 124.6 (C-3') 122.8 (C-5), 119.4 (C-6), 116.2 (C-4), and $109.9 \mathrm{ppm}(\mathrm{C}-7)$; UV $\lambda_{\max }$ (ethanol) ( $\log \epsilon$ ) 332 (3.86), 311 (3.92), 268 (4.32), and 209 nm (4.53); $\lambda_{\max }\left(\right.$ ethanol, $\left.\mathrm{H}^{+}\right)(\log \epsilon) 327(3.79), 260(4.22), 225(4.32)$ and 204 nm (4.72); MS m/e (\%) 281 (97.5), 132 (100).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{2}: \mathrm{C}, 59.78 ; \mathrm{H}, 3.94 ; \mathrm{N} .24 .90$. Found: C, 59.98; H, 4.17; N, 24.94.

2-Amino-1-[(3,4,5-trimethoxybenzylidene)amino]benzimidazole (13). A solution of $9 \mathrm{~d}(1.48 \mathrm{~g}, 0.01 \mathrm{~mol}), 3,4,5$-trimethoxybenzaldehyde ( $1.96 \mathrm{~g}, 0.01 \mathrm{~mol}$ ), and 1 ml of 1.7 N KOH in 70 ml of ethanol was refluxed for 30 min . Evaporation of the solvent gave a solid which was recrystallized from ethanol to afford 2.9 g ( $89 \%$ yield) of $13: \mathrm{mp}$ $183-185^{\circ} \mathrm{C}$; IR ( KBr ) $3350(\mathrm{NH}), 2998(=\mathrm{CH}), 1650(\mathrm{C}=\mathrm{C}), 1535$ ( $\mathrm{C}=\mathrm{N}$ ), 1565 and $1350 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{Me}_{2} \mathrm{SO}-d_{\mathrm{f}}$ ) $3.79(\mathrm{~s}, 3$ $\mathrm{H}, p-\mathrm{OCH}_{3}$ ), 3.92 ( $\mathrm{s}, 6 \mathrm{H}, m-\mathrm{OCH}_{3}$ ), 6.88 (broad s, $2 \mathrm{H}, \mathrm{NH}_{2}$ ), $6.92-$ $8.03(\mathrm{~m}, 6 \mathrm{H}$, aromatic H$)$, and $9.03(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}) ;{ }^{1.2} \mathrm{C}$ NMR 154.3 (C-2), 153.1 ( $\mathrm{C}-3^{\prime}$ and $\left.\mathrm{C}-5^{\prime}\right), 147.3(\mathrm{~N}=\mathrm{C}), 142.3(\mathrm{C}-9), 139.5\left(\mathrm{C}-4^{\circ}\right)$, 129.6 (C-1'), 129.2 (C-8), 122.2 (C-5), 118.9 (C-6), 115.8 (C-4), 110.5 (C-7), 105.3 ( $\mathrm{C}-2^{\prime}$ and $\left.\mathrm{C}-6^{\prime}\right), 60.1\left(p-\mathrm{OCH}_{3}\right)$, and $56.1 \mathrm{ppm}\left(m-\mathrm{OCH}_{;}\right)$; UV $\lambda_{\max }$ (ethanol) $(\log \epsilon) 320(4.11), 282(4.23)$, and $228 \mathrm{~nm}(4.22) ; \lambda_{\text {max }}$ (ethanol, $\mathrm{H}^{+}$) $(\log \epsilon) 320(4.06), 284(3.87), 278$ (3.87), 256 (3.68), and 222 nm (4.20).
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}: \mathrm{C}, 62.57 ; \mathrm{H}, 5.56 ; \mathrm{N}, 17.17$. Found: C , 62.38; H, 5.61; N, 16.98 .

Attempts to cyclize 12 by a variety of methods were unsuccessful. When $12(0.50 \mathrm{~g}, 0.0018 \mathrm{~mol})$ was refluxed in dilute sulfuric acid, a pale yellow solid formed and was recrystallized from ethanol, mp 233.5-235
${ }^{\circ} \mathrm{C}$. This compound was identified as 2-amino-1-( ( 0 -nitrobenzylidene)aminolbenzimidazole sulfate: IR (KBr) $3300(\mathrm{NH}), 3000(=\mathrm{CH})$, $1690(\mathrm{C}=\mathrm{C}), 1505(\mathrm{C}=\mathrm{N}), 1530$ and $1330 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ ) $\delta 5.63$ (broad s, $3 \mathrm{H}, \mathrm{NH}_{2}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ ), $7.02-8.72(\mathrm{~m}, 8 \mathrm{H}$, aromatic H ), and $9.57(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $148.8\left(\mathrm{C}-2, \mathrm{C}-\mathrm{NO}_{2}\right.$, and $\mathrm{N}=\mathrm{C}$ ), 135.6 (C-9), 133.9 (C-5'), 131.8 (C-4'), 129.2 (C-6'), 127.9 (C-1'), 125.0 (C-8), 124.7 (C-3'), 123.9 (C-5), 121.4 (C-6), 114.5 (C-4), and $110.5 \mathrm{ppm}(\mathrm{C}-7)$.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{10} \mathrm{O}_{8} \mathrm{~S}: \mathrm{C}, 50.91 ; \mathrm{H}, 3.66 ; \mathrm{N}, 21.21 ; \mathrm{S}, 4.84$. Found: C, 50.42; H, 3.61; N, 20.97; S, 4.96.
2. With Benzil. 2,3-Diphenyl-as-triazino[2,3-a ]benzimidazole (14). Addition of 3 drops of an aqueous 2 N potassium hydroxide solution to a heated solution of $9 \mathrm{~d}(0.296 \mathrm{~g}, 0.002 \mathrm{~mol})$ and benzil ( 0.420 $\mathrm{g}, 0.002 \mathrm{~mol}$ ) in 25 ml of ethanol produced immediate formation of a yellow precipitate. The reaction mixture was refluxed, with stirring, for 30 min to afford 0.64 g ( $94 \%$ yield) of $14: \mathrm{mp} 278-281^{\circ} \mathrm{C}$; IR ( KBr ) $3000(=\mathrm{CH}), 1540,1500$, and $1475 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.46$ ( s , 14 H , aromatic H); MS m/e (\%) 322 (100); UV $\lambda_{\text {max }}$ (ethanol) ( $\log \epsilon$ ) 375 (4.01), 270 (4.38), and 202 nm (4.54).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{4} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 74.10 ; \mathrm{H}, 4.74$. Found: C, 74.40 ; H, 4.56.
3. With Lead Tetraacetate. 3-Amino-1,2,4-benzotriazine (11d). Lead tetraacetate ( $1.42 \mathrm{~g}, 0.003 \mathrm{~mol}$ ) was added to a suspension of 9 d ( $0.30 \mathrm{~g}, 0.002 \mathrm{~mol}$ ) in 25 ml of methylene chloride. The reaction mixture turned bright yellow and then brown. After $5 \mathrm{~min}, 3 \mathrm{ml}$ of ethylene glycol was added to destroy any unreacted lead tetraacetate followed by 100 ml of water. The aqueous layer was extracted with methylene chloride; the extract was reduced in volume and then chromatographed on a silica gel column with methylene chlorideethyl acetate. Elution of the resulting yellow band afforded $0.23 \mathrm{~g}(80 \%$ yield) of $11 \mathrm{~d}: \mathrm{mp} 206-208^{\circ} \mathrm{C}$ (lit. ${ }^{20} \mathrm{mp} 207^{\circ} \mathrm{C}$ ); IR (KBr) 3200,3050 (NH), $1660(\mathrm{C}=\mathrm{C})$, and $1545 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; MS m/e (\%) 146 (74) and 118 (100); ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ ) $\delta 7.25-8.45$ (m, 6 H , aromatic H and $\mathrm{NH}_{2}$ ).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{4}$ : C, 57.53 ; $\mathrm{H}, 4.14$. Found: C, $57.29 ; \mathrm{H}$, 4.22.

3-Amino-6-trifluoromethyl-1,2,4-benzotriazine (11a). This compound was prepared as described for 11d and isolated directly from the methylene chloride extracts without resort to column chromatography.Recrystallization of 11a from ethanol afforded 0.10 g ( $95 \%$ yield): mp $230.5-232{ }^{\circ} \mathrm{C}$; IR ( KBr ) 3240, 3100 (NH), 1650 $(\mathrm{C}=\mathrm{C})$, and $1540 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; UV $\lambda_{\max }($ (ethanol) $)(\log \epsilon) 280(3.33)$, $252 \mathrm{sh}(4.07), 236$ (4.38), and $203 \mathrm{~nm}(4.28)$; ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ ) $\delta$ $7.53-8.63(\mathrm{~m}, 3 \mathrm{H}$, aromatic H$)$ and 7.92 (broad s, $2 \mathrm{H}, \mathrm{NH}_{2}$ ).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{~N}_{4}: \mathrm{C}, 44.87$; $\mathrm{H}, 2.35$; N, 26.16. Found: C, 44.67; H, 2.24; N, 26.01.

3-Amino-6-chloro-1,2,4-benzotriazine (11b). Compound 11b was prepared and purified as described for 11a. The yield of 11 b was $0.06 \mathrm{~g}(48 \%): \mathrm{mp} 277.5-279^{\circ} \mathrm{C}$; IR ( KBr ) 3200, 3095 (NH), 1675 $(\mathrm{C}=\mathrm{C})$, and $1550 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; UV $\lambda_{\text {max }}($ ethanol $)(\log \epsilon) 303$ (3.41), 242 (4.30), and $211 \mathrm{~nm}(4.25) ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ ) $\delta 7.33-8.35(\mathrm{~m}$, 3 H , aromatic H ) and 7.75 (broad s, $2 \mathrm{H}, \mathrm{NH}_{2}$ ).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ClN}_{4}: \mathrm{C}, 46.55 ; \mathrm{H}, 2.79 ; \mathrm{Cl}, 19.63 ; \mathrm{N}, 31.03$. Found: C, 46.22; H, 2.65; Cl, 19.40; N, 30.99.

3-Amino-6-methyl-1,2,4-benzotriazine (11c). This compound was prepared as described for 11d and purified by chromatography
on a silica gel column with a 1:3 mixture of acetonitrile and ethyl acetate. Recrystallization of $11 \mathbf{c}$ from ethanol afforded 0.09 g ( $57 \%$ yield) of a bright yellow solid: mp $242-244^{\circ} \mathrm{C}$; IR ( KBr ) $3200,3080(\mathrm{NH})$, $1650\left(\mathrm{C}=\mathrm{C}\right.$ ), and $1540 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; UV $\lambda_{\max }$ (ethanol) ( $\log \epsilon$ ) 308 (3.38), 237 (4.24), and $208 \mathrm{~nm}(4.22) ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ ) $\delta 2.48$ ( s , $3 \mathrm{H}, \mathrm{CH}_{3}$ ), 7.13-8.23 (m, 3 H , aromatic H), and 7.44 (broad s, 2 H , $\mathrm{NH}_{2}$ ).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{4}: \mathrm{C}, 59.99 ; \mathrm{H}, 5.03$. Found: C, 59.78 ; H , 4.70 .

3-Amino-6,7-dimethyl-1,2,4-benzotriazine (11e). Compound 11e was prepared and purified as described for 11a. The yield of 11e was $0.06 \mathrm{~g}\left(73 \%\right.$ ): mp $286-288^{\circ} \mathrm{C}$ (lit. ${ }^{21} \mathrm{mp} 286^{\circ} \mathrm{C}$ ); IR ( KBr ) 3200, $3140(\mathrm{NH}), 1650(\mathrm{C}=\mathrm{C})$, and $1520 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; UV $\lambda_{\text {max }}$ (ethanol) ( $\log \epsilon$ ) 308 (3.70), 238 (4.61), and $208 \mathrm{~nm}(4.53) ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ ) $\delta 2.40\left(\mathrm{broad} \mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 7.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.36\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, and 8.78 (s, $1 \mathrm{H}, \mathrm{H}-8$ ).

Registry No.-1, 455-14-1; 2, 349-97-3; 3, 396-12-3; 4a, 400-98-6; 4b, 89-63-4; 4c, 89-62-3; 5a, 1513-50-4; 5b, 54454-57-8; 5c, 50707-83-0; 6a, 60882-61-3; 6b, 60882-62-4; 6c, 60882-63-5; 7a, 60882-64-6; 7b, 60882-65-7; 7c, 60882-66-8; 8a, 60882-67-9; 8b, 60882-68-0; 8c, 60882-69-1; 9a, 60882-70-4; 9b, 60882-71-5; 9c, 60882-72-6; 9d, 29540-87-2; 9e, 60882-73-7; 10d, 934-32-7; 10e, 29096-75-1; 11a, 60882-74-8; 11b, 60882-75-9; 11c, 60882-76-0; 11d, 20028-80-2; 11e, 27238-42-2; 12, 60882-77-1; 12 sulfate, 60882-78-2; 13, 60882-79-3; 14, 60882-80-6; cyanogen bromide, 506-68-3; o-nitrobenzaldehyde, 552-89-6; 3,4,5-trimethoxybenzaldehyde, 86-81-7; acetic anhydride, 108-24-7; benzil, 134-81-6.

## References and Notes

(1) D. W. Wooley, J. Biol. Chem., 152, 225 (1944).
(2) W. Bungener and G. Nielsen, Z. Tropenmed. Parasitol., 20, 67 (1969)
(3) C. Walshe and I. W. Sherman J. Protozool., 15, 763 (1968).
(4) W. A. Sexton, "Chemical Constitution and Biological Activity", 3d ed, Spon, London, 1963
(5) R. I-Fu Ho and A. R. Day, J. Org. Chem., 38, 3084 (1973).
(6) T. Sheradsky, G. Salemnick, and Z. Nir, Tetrahedron, 28, 3833 (1972).
(7) M. H. Fisher, B. O. Linn, R. J. Bochis, and C. S. Rooney, German Offen. 2300521 (1973); Chem. Abstr. 79, 92229p (1973).
(8) R. I-Fu Ho, Ph.D. Dissertation, University of Pennsylvania, Philadelphia, Pa., 1969, pp 97-98
(9) H/ E. Baumgarten, P. L. Creger, and R. L. Zey, J. Am. Chem. Soc., 82, 3977 (1960).
(10) D. J. C. Adams, S. Bradbury, D. C. Horwell, M. Keating, C. W. Rees, and R. C. Storr, Chem. Commun., 828 (1971).
(11) C. W. Rees and M. Yelland, Chem. Commun., 377 (1969).
(12) B. Adger, C. W. Rees, A. A. Sale, and R. C. Storr, Chem. Commun., 695 (1971).
(13) F. J. Wolf and K. Pfister, III, U.S. Patent 2489352 (Nov 29, 1949).
(14) F. J. Wolf, K. Pfister, III, R. M. Wilson, Jr., and C. A. Robinson, J. Am. Chem. Soc., 76, 3551 (1954)
(15) (a) E. Pouterman and A. Girardet, Helv. Chim. Acta. 30, 107 (1947); (b) R. G. Jones, J. Am. Chem. Soc., 69, 2346 (1947).
(16) M. P. Pettit and J. C. Tatlow, J. Chem. Soc., 3852 (1954).
(17) L. M. Yagupol' skii and B. E. Gruz, Ukr. Khim. Zh., 23, 634 (1957).
(18) S. G. P. Plant and R. D. J. Rosser, J. Chem. Soc., 2454 (1928).
(19) F. G. Pope and J. M. Hird, J. Chem. Soc., 1141 (1901).
(20) F. Arndt, Ber., 46, 3522 (1913).
(21) J. C. Mason and G. Tennant, J. Chem. Soc. B, 911 (1970).

